Research Roundup: January 2020

 

Interested in keeping up to date with research relevant to your clinical practice?

The Calibrate Pilates team rounds this up so that you can integrate new information into your evidence-informed practice: join our newsletter now.

 

The Perception of Auditory Motion

Simon Carlile, Johahn Leung (2016): The Perception of Auditory Motion, Trends in Hearing, DOI: 10.1177/2331216516644254

This review of auditory motion is a fascinating look at how we are able to perceive the motion of objects, even as our bodies (and heads) are constantly moving.

 

Key Points 
  • Auditory motion cues arrive when either the sound is in motion, or the listener is in motion.
  • Listeners are best able to perceive auditory localisation (accurately and precisely) in the anterior field.
  • Auditory targets are encoded in a body-centred, rather than a head-centred coordinate system:
    • This implies that the accurate perception of the location of a sound source requires the integration of information about the relative position of the head with respect to the body.
  • Vestibular stimulation has been shown to influence auditory spatial perception in the absence of changes in the posture of the head.|
  • As no low-level motion detectors are found in the auditory system, auditory motion perception may be subserved by a higher-level system:
    • These are similar to those of third-order motion detectors in vision, which are centrally located, binocular in nature, and heavily modulated by attention.
  • Movement of the head also plays an important role in auditory perception.

  • Spectral changes associated with the change in location are sufficient to induce the perception of motion; however, at least for the horizontal dimension, the binaural cues appear necessary to determine the direction of motion.
  • When the upper limits of rotational motion are examined under anechoic and reverberant conditions, listeners are slightly more sensitive to accelerating compared with decelerating noise.
  • An approaching auditory stimulus activates a wider network of circuitry than a receding auditory stimulus.
  • The auditory system relies on duration and distance over speed, but in the absence of these cues the auditory system uses velocity cues, which are much less sensitive.

  • Various studies have shown that lesions can cause deficit in auditory motion perception.

 

Clinically: Pilates in Practice
  • Use sounds/voices to guide head/neck and body movements.
  • Be aware of persistent auditory stimuli within the clinical space: is there always traffic in a client's right auditory field? If so, how does movement change if that auditory stimulus is in the client's left field?
  • Train with auditory stimuli that are relevant to the functional task: does the client consistently have auditory stimuli anteriorly or posteriorly?
  • Consider the auditory impacts for clients with concussion symptoms, and/or persistent headaches. 
  • Practice head movements with different auditory cues; nose clocks can be used an assessment tool for this. 
  • Can you guide spinal extension with cues from behind the head to facilitate alignment? Swan on the Wunda Chair; down stretch on the Reformer.
  • Lead with a unilateral auditory stimulus in the direction of side flexion; side overs on the Reformer; side lifts on the Trapeze Table; star at the Tower.

 

 

 

1. Carlile, S., & Pralong, D. (1994). The location-dependent nature of perceptually salient features of the human head-related transfer function. The Journal of the Acoustical Society of America, 95(6), 3445–3459.

2. Freeman, T., Leung, J., Wufong, E., Orchard-Mills, E., Carlile, S., & Alais, D. (2014). Discrimination contours for moving sounds reveal duration and distance cues dominate auditory speed perception. PloSone, doi:10.1371/journal. pone.0102864

3. Goossens, H. H., & van Opstal, A. J. (1999). Influence of head position on the spatial representation of acoustic targets. Journal of Neurophysiology, 81(6), 2720–2736.

4. Griffiths, T. D., Bates, D., Rees, A., Witton, C., Gholkar, A., & Green, G. G. R. (1997). Sound movement detection deficit due to a brainstem lesion. Journal of Neurology, Neurosurgery, and Psychiatry, 62, 522–526.

 

 

Instruction Modes for Motor Control Skills Acquisition

Roy La Touche, Macarena Sánchez-Vázquez, Ferran Cuenca-Martínez, María Prieto-Aldana, Alba Paris-Alemany & Gonzalo Navarro-Fernández (2019): Instruction Modes for Motor Control Skills Acquisition: A Randomized Controlled Trial, Journal of Motor Behavior, DOI: 10.1080/00222895.2019.1645087

Previous research has demonstrated that mirror neurons play an important role in learning; action observation training or motor imagery practice is based on this mechanism. This small study has some flaws, but demonstrated that motor imagery was more effective for developing motor control than tactile feedback or verbal instruction.

 

Key Points:
  • Motor imagery is the dynamic mental processing of an action, without its real motor execution.
  • Motor imagery can improve pain and improve lumbar movement, implying that is is as effective as real motor practice.
  • Motor imagery can be used to facilitate the learning and acquisition of motor skills, and the maintenance of previously acquired skills.
  • Motor imagery can also be used to stimulate motor, sensory, emotional, and kinaesthetic responses.
  • An individual’s ability to generate and control mental images can play a significant role in its effectiveness.
  • Position control through tactile feedback can be useful for patients who struggle with motor imagery.
  • Motor imagery in combination with real motor practice is more effective.

 

Clinically: Teaching Pilates in Practice
  • Connect with and understand your clients, as a deeper understanding of their backgrounds, interests, and ideas will help you to put motor imagery into practice with them.

  • If a client is struggling to generate motor images with the examples you're using, try again: expose yourself to many other instructors, instructions, and images as you can, to build your toolkit.

  • Demonstrating exercises can be a way to come up with motor images together with your client: allow them to pick the motor images that resonate with them.

  • Combine tactile feedback with motor imagery to facilitate learning a new task: you can remove the tactile feedback later.
Close

50% Complete

Two Step

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.